Skip to contents

Population by gender from the 2022 edition (pop22_gender) This dataset came from the SC Office of Revenue and Fiscal Affairs. Tidy Format of (Nov 2022 Data)

Usage

pop22_gender

Format

A tidy data frame after reshaped to long form by creating new columns for Year, Type (Estimate or Projection), Gender (Total, Male, or Female), and Population.

FIPS

FIPS code of each county

County

Name of county

Year

Year of Projection/Estimate (2010-2038)

Type

Estimate or Projection

Gender

Male , Female or Total

Population

Population number

Examples

data(pop22_gender )
 head(pop22_gender )
#> # A tibble: 6 × 6
#>    FIPS County     Year Type     Gender Population
#>   <dbl> <chr>     <int> <chr>    <chr>       <dbl>
#> 1     1 ABBEVILLE  2010 Estimate Female      13055
#> 2     1 ABBEVILLE  2010 Estimate Male        12283
#> 3     1 ABBEVILLE  2010 Estimate Total       25338
#> 4     1 ABBEVILLE  2011 Estimate Female      12919
#> 5     1 ABBEVILLE  2011 Estimate Male        12174
#> 6     1 ABBEVILLE  2011 Estimate Total       25093